Purinergic control of apical plasma membrane PI(4,5)P2 levels sets ENaC activity in principal cells.
نویسندگان
چکیده
Activity of the epithelial sodium channel (ENaC) is limiting for Na(+) reabsorption at the distal nephron. Phosphoinositides, such as phosphatidylinositol 4,5-biphosphate [PI(4,5)P(2)] modulate the activity of this channel. Activation of purinergic receptors triggers multiple events, including activation of PKC and PLC, with the latter depleting plasma membrane PI(4,5)P(2). Here, we investigate regulation of ENaC in renal principal cells by purinergic receptors via PLC and PI(4,5)P(2). Purinergic signaling rapidly decreases ENaC open probability and apical membrane PI(4,5)P(2) levels with similar time courses. Moreover, inhibiting purinergic signaling with suramin rescues ENaC activity. The PLC inhibitor U73122, but not U73343, its inactive analog, recapitulates the action of suramin. In contrast, modulating PKC signaling failed to affect purinergic regulation of ENaC. Unexpectedly, inhibiting either purinergic receptors or PLC in resting cells dramatically increased ENaC activity above basal levels, indicating tonic activation of purinergic signaling in these polarized renal epithelial cells. Increased ENaC activity was associated with elevation of apical membrane PI(4,5)P(2) levels. Subsequent treatment with ATP in the presence of inhibited purinergic signaling failed to decrease ENaC activity and apical membrane PI(4,5)P(2) levels. Dwell-time analysis reveals that depletion of PI(4,5)P(2) forces ENaC toward a closed state. In contrast, increasing PI(4,5)P(2) levels above basal values locks the channel in an open state interrupted by brief closings. Thus our results suggest that purinergic control of apical membrane PI(4,5)P(2) levels is a major regulator of ENaC activity in renal epithelial cells.
منابع مشابه
Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling.
Phosphatidyl inositol 4,5-bisphosphate (PI 4,5-P2) accumulates in a Rac/Rop-dependent manner in the pollen tube tip plasma membrane, where it may control actin organization and membrane traffic. PI 4,5-P2 is hydrolyzed by phospholipase C (PLC) activity to the signaling molecules inositol 1,4,5-trisphosphate and diacyl glycerol (DAG). To investigate PLC activity during tip growth, we cloned Nt P...
متن کاملPI(4,5)P2 Produced by the PI4P5K SKTL Controls Apical Size by Tethering PAR-3 in Drosophila Epithelial Cells
BACKGROUND The control of apical-basal polarity in epithelial layers is a fundamental event in many processes, ranging from embryonic development to tumor formation. A key feature of polarized epithelial cells is their ability to maintain an asymmetric distribution of specific molecular complexes, including the phosphoinositides PI(4,5)P2 and PI(3,4,5)P3. The spatiotemporal regulation of these ...
متن کاملSHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration in 1321 N1 glioblastoma cells.
Phosphoinositides, particularly phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], are recognized by SHIP2 (also known as INPPL1) a member of the inositol polyphosphate 5-phosphatase family. SHIP2 dephosphorylates PI(3,4,5)P3 to form PI(3,4)P2; the latter interacts with specific target proteins (e.g. lamellipodin). Although the prefer...
متن کاملVesicle Docking Is a Key Target of Local PI(4,5)P2 Metabolism in the Secretory Pathway of INS-1 Cells
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) signaling is transient and spatially confined in live cells. How this pattern of signaling regulates transmitter release and hormone secretion has not been addressed. We devised an optogenetic approach to control PI(4,5)P2 levels in time and space in insulin-secreting cells. Combining this approach with total internal reflection fluorescence mic...
متن کاملPhosphatidylinositol 4-phosphate 5-kinase reduces cell surface expression of the epithelial sodium channel (ENaC) in cultured collecting duct cells.
Ubiquitination of ENaC subunits has been shown to negatively regulate the cell surface expression of ENaC channels. We have previously demonstrated that epsin links ubiquitinated ENaC to clathrin adaptors for clathrin-mediated endocytosis. Epsin is thought to directly modify the curvature of membranes upon binding to phosphatidylinositol 4,5-bisphosphate (PIP2) where it recruits clathrin and st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 294 1 شماره
صفحات -
تاریخ انتشار 2008